How To Derive and Parameterize Effective Potentials in Colloid-Polymer Mixtures
نویسندگان
چکیده
Polymer chains in colloid-polymer mixtures can be coarse-grained by replacing them with single soft particles interacting via effective polymer-polymer and polymer-colloid pair potentials. Here we describe in detail how Ornstein-Zernike inversion techniques, originally developed for atomic and molecular fluids, can be generalized to complex fluids and used to derive effective potentials from computer simulations on a microscopic level. In particular, we consider polymer solutions for which we derive effective potentials between the centers of mass and also between mid-points or end-points from simulations of self-avoiding walk polymers. In addition, we derive effective potentials for polymers near a hard wall or a hard sphere. We emphasize the importance of including both structural and thermodynamic information (through sum rules) from the underlying simulations. In addition, we develop a simple numerical scheme to optimize the parametrization of the density-dependent polymer-polymer, polymer-wall, and polymer-sphere potentials for dilute and semidilute polymer densities, thus opening up the possibility of performing large-scale simulations of colloid-polymer mixtures. The methods developed here should be applicable to a much wider range effective potentials in complex fluids.
منابع مشابه
A density–functional study of interfacial properties of colloid–polymer mixtures∗
Abstract Interfacial properties of colloid–polymer mixtures are examined within an effective one– component representation, where the polymer degrees of freedom are traced out, leaving a fluid of colloidal particles interacting via polymer–induced depletion forces. Restriction is made to zero, one and two–body effective potentials, and a free energy functional is used which treats colloid exclu...
متن کاملDensity-functional study of interfacial properties of colloid-polymer mixtures.
Interfacial properties of colloid-polymer mixtures are examined within an effective one-component representation, where the polymer degrees of freedom are traced out, leaving a fluid of colloidal particles interacting via polymer-induced depletion forces. Restriction is made to zero-, one-, and two-body effective potentials, and a free energy functional is used that treats colloid excluded volu...
متن کاملColloid-polymer mixtures in the protein limit.
We computed the phase-separation behavior and effective interactions of colloid-polymer mixtures in the "protein limit," where the polymer radius of gyration is much larger than the colloid radius. For ideal polymers, the critical colloidal packing fraction tends to zero, whereas for interacting polymers in a good solvent the behavior is governed by a universal binodal, implying a constant crit...
متن کاملPhase separation in star-polymer-colloid mixtures.
We examine the demixing transition in star-polymer-colloid mixtures for star arm numbers f=2,6,16,32 and different star-polymer-colloid size ratios 0.18< or =q< or =0.50. Theoretically, we solve the thermodynamically self-consistent Rogers-Young integral equations for binary mixtures using three effective pair potentials obtained from direct molecular computer simulations. The numerical results...
متن کاملAccurate coarse-grained models for mixtures of colloids and linear polymers under good-solvent conditions.
A coarse-graining strategy, previously developed for polymer solutions, is extended here to mixtures of linear polymers and hard-sphere colloids. In this approach, groups of monomers are mapped onto a single pseudoatom (a blob) and the effective blob-blob interactions are obtained by requiring the model to reproduce some large-scale structural properties in the zero-density limit. We show that ...
متن کامل